Li$_2$O–MgO–TiO$_2$ ternary system is an important microwave dielectric ceramic material with excellent properties and prospect in both scientific research and application. A phase diagram of the Li$_2$O–MgO–TiO$_2$ ternary system was established in this article, based on earlier research results and our present work. Microwave dielectric properties with compositions in different regions of the phase diagram have been analyzed. We found that the 0.33 Li$_3$MgTi$_3$O$_8$–0.67 Li$_2$Ti$_2$O$_5$ ceramics sintered at 1200°C exhibited excellent dielectric properties: $Q \times f$ value = 80 476 GHz (at 7.681 GHz), $\varepsilon_r = 24.7$, $\tau_f = +3.2$ ppm/°C. We also designed two ceramic systems in the Li-rich region of the Li$_2$O–MgO–TiO$_2$ ternary system, which received little attention in the past decades, because many excellent single-phase ceramics, such as Li$_2$MgTiO$_4$, Li$_2$MgTi$_3$O$_8$ and MgTiO$_3$, have been found in the Ti-rich region. The ceramic systems have low sintering temperatures but also relatively poor dielectric properties.

Keywords: dielectric materials/properties; phase diagrams; oxides

I. Introduction

Since 1980s, modern wireless communication technology has witnessed unprecedented prosperity and it greatly promoted the research and application on the microwave dielectric ceramic materials. Generally, a dielectric ceramic material is judged with three key properties: high $Q \times f$ value, zero temperature coefficient at resonant frequency (TCF or τ_f) and high relative dielectric constant (ε_r). Dielectric ceramics with such excellent properties have been widely used in resonator, filter, duplexer, multiplexer, and other microwave or wireless devices.\(^1\)\(^2\)

The Li$_2$O–MgO–TiO$_2$ (indexed as LMTO) ternary system is an important microwave dielectric ceramic system. It is derived from the Li$_2$O–ZnO–TiO$_2$ ternary system (indexed as LZTO), which was earned extensive investigation. In 1996, Hernandez et al.\(^3\) first reported Li$_2$O–ZnO–TiO$_2$ ternary phase diagram at 1100°C, in which they studied different compositions of the Ti-rich region. Figure 1 shows a revised version of Hernandez’s original phase diagram. The marked line on the left denotes the spinel-structured solid solution (spinel ss) between Zn$_2$TiO$_4$ and Li$_2$Ti$_2$O$_5$. The other two marked lines in the graph indicate the rock-salt-structured solid solution.

A few single-phase ceramics in the LZTO system, such as Li$_2$ZnTi$_3$O$_8$ and Li$_2$Zn$_3$Ti$_3$O$_{12}$, were found to possess high $Q \times f$ values (over 70 000 GHz) and relatively small TCF values (< about –10 to –40 ppm/°C).\(^3\)\(^5\) Researchers then tried to replace Zn$^{2+}$ with other divalent ions, such as Mg$^{2+}$ or Co$^{2+}$, to achieve even higher $Q \times f$ values.

Recently, various Li$_2$O–MgO–TiO$_2$ ceramics have been reported to possess high $Q \times f$ values, near-zero τ_f values or low sintering temperatures, but an overall LMTO ternary diagram has not been available. Therefore, we have attempted to make a comprehensive understanding on the Li$_2$O–MgO–TiO$_2$ ternary system. With the literature data, combined with our experimental results, we established a pseudo phase diagram for the LMTO system. Microwave dielectric properties and compositions in different regions of the phase diagram will be discussed. In addition, we found a couple of excellent ceramic samples in recent study, whose dielectric properties and the microstructures were analyzed and discussed in the paper.

II. Experimental Procedure

Ceramic samples were prepared using the conventional ceramic route as previously described.\(^1\)\(^2\) The samples were divided into two groups, Ti-rich group and Li-rich group, for which calcination temperature is 600°C and 1000°C, respectively. After re-milling, powders were pressed into cylinders with binder addition. Li-rich samples were sintered at the temperature ranges from 600°C to 800°C for 4 h, while Ti-rich samples were sintered from 1150°C to 1300°C for 4 h.

Crystalline structures were identified using X-ray diffraction (XRD) with Cu-K$_x$ radiation (Rigaku D/MAX-2400 X-ray diffractometer, Tokyo, Japan). Microstructures were studied using scanning electron microscopy (SEM) (JSM-6460, JEOL, Tokyo, Japan). Bulk densities were obtained through the Archimedes method. Dielectric properties at microwave region were measured using TE$_{016}$ method with a network analyzer (8720ES, Agilent, Palo Alto, CA) and a programmable temperature chamber in 25°C–85°C. Temperature coefficient of resonant frequency (τ_f) was calculated as follows:

$$\tau_f = \frac{f_{85} - f_{25}}{f_{25}(85 - 25)} \times 10^6 \text{ ppm/°C},$$

where f_{85} and f_{25} were the TE$_{016}$ resonant frequencies at 85°C and 25°C, respectively.

N. Alford—contributing editor
III. Results and Discussion

Figure 2 demonstrates single-phase ceramics in the LMTO ternary system. Dielectric properties of these ceramics are listed in Table I.5–15 Except TiO₂, they have dielectric constants (at microwave frequencies) ranging from 17 to 27. Q × f values of the ceramics are all above 40 000 GHz, with the highest value to be 160 000 GHz. TiO₂ has a very large positive τf of +465 ppm/°C, Li₂MgTi₃O₈ has a low τf of +3 ppm/°C, and Li₂TiO₃ has a medium positive

Table I. Dielectric Properties of the Single-Phase Ceramics in the LMTO Ternary System

<table>
<thead>
<tr>
<th>Number</th>
<th>Phase</th>
<th>Li₂:Mg:Ti</th>
<th>Sintering temperature/°C</th>
<th>εr</th>
<th>Q × f value/GHz</th>
<th>τf/ppm/°C</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>TiO₂</td>
<td>0:0:1</td>
<td>–</td>
<td>–</td>
<td>~105</td>
<td>46 000</td>
<td>+465</td>
</tr>
<tr>
<td>B</td>
<td>Li₂TiO₃</td>
<td>1:0:1</td>
<td>1200</td>
<td>~22</td>
<td>60 000</td>
<td>+22</td>
<td>8</td>
</tr>
<tr>
<td>C</td>
<td>MgTi₂O₅</td>
<td>0:1:2</td>
<td>1500</td>
<td>~17</td>
<td>50 000</td>
<td>–60</td>
<td>9</td>
</tr>
<tr>
<td>D</td>
<td>MgTiO₄</td>
<td>0:1:1</td>
<td>1275</td>
<td>~17</td>
<td>110 000</td>
<td>–55</td>
<td>10,11</td>
</tr>
<tr>
<td>E</td>
<td>Mg₂TiO₄</td>
<td>0:2:1</td>
<td>1450</td>
<td>~17</td>
<td>160 000</td>
<td>–59</td>
<td>12</td>
</tr>
<tr>
<td>F</td>
<td>Li₂MgTiO₃</td>
<td>1:1:1</td>
<td>1250</td>
<td>~17</td>
<td>100 000</td>
<td>–27</td>
<td>15</td>
</tr>
<tr>
<td>G</td>
<td>Li₂Mg₂Ti₃O₁₂</td>
<td>1:3:4</td>
<td>1125</td>
<td>~20</td>
<td>62 000</td>
<td>–27</td>
<td>7</td>
</tr>
<tr>
<td>H</td>
<td>Li₂Mg₂Ti₅O₈</td>
<td>1:1:3</td>
<td>1000</td>
<td>~27</td>
<td>40 000</td>
<td>–3</td>
<td>13</td>
</tr>
<tr>
<td>I</td>
<td>Li₂TiO₁₂</td>
<td>2:0:5</td>
<td>930</td>
<td>~19</td>
<td>9200</td>
<td>–9</td>
<td>14</td>
</tr>
<tr>
<td>J</td>
<td>Li₂Ti₂O₇</td>
<td>1:0:3</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>K</td>
<td>Li₄TiO₄</td>
<td>2:0:1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
The rests of the ceramics have negative ε_f values. Therefore, Li$_2$TiO$_3$ becomes a common ceramic that can be combined with other ceramics to achieve temperature-stabled materials, as the ε_f value of Li$_2$MgTi$_3$O$_8$ is too small to neutralize those with large negative values. Among the 10 ceramics, the dielectric properties of Li$_2$Ti$_3$O$_7$ and Li$_4$TiO$_4$ have not been studied.

Figure 3 shows a pseudo phase diagram of the LMTO system. Unlike a standard phase diagram, the composition and dielectric properties of each point in this pseudo phase diagram was measured under its optimized sintering temperature. Different compositions in the Ti-rich region are shown in the figure. The LMTO system is quite similar to the LZTO system, but one exception was found in our recent study. That is the triangle region in the LMTO system, as indicated by the small red square in Fig. 3, which has different composition from the region in the LZTO phase diagram. The region in the LMTO system consists of MgO, Mg$_2$TiO$_4$ (spinel ss), Li$_2$TiO$_3$ and Li$_2$MgTiO$_4$, whereas the related region in the LZTO system consists of ZnO, Zn$_2$TiO$_4$ and Li$_2$TiO$_3$, without Li$_2$ZnTiO$_4$. Li$_2$ZnTiO$_4$ either does not exist or has not been reported in the open literatures. However, Li$_2$MgTiO$_4$ has been identified and investigated.$^{15-18}$ The red square in Fig. 3 represents the 0.4 Mg$_2$TiO$_4$–0.6 Li$_2$TiO$_3$, whose XRD pattern is shown in Fig. 4. There are four phases, Li$_2$MgTiO$_4$, MgO, Mg$_2$TiO$_4$, and Li$_2$TiO$_3$.

Li$_2$MgTi$_3$O$_8$, Li$_2$Mg$_3$Ti$_4$O$_{12}$, and Mg$_2$TiO$_4$ belong to spinel-related structure. Figure 5(a) shows the classic crystal structure with formula ABX$_4$. In this structure, X$^{2-}$ ions form in a face-centered cubic close packing. A$^{2+}$ ions, or bivalent cations, occupy one-eighth of the tetrahedral
interstices, and B$^{3+}$ ions, or trivalent cations, occupy half of the octahedral interstices. If half of the B$^{3+}$ were replaced by A$^{2+}$, it becomes inverse spinel structure, such as Mg$_2$TiO$_4$. For Li$_2$MgTi$_3$O$_8$ and Li$_2$Mg$_3$Ti$_4$O$_{12}$, Li$^+$, and Mg$^{2+}$ together occupy A$^{2+}$ sites, and Ti$^{3+}$ occupy B$^{3+}$ sites. In addition, because they are solid solutions, there could be various defects. Li$_2$MgTiO$_4$ has rock salt structure, which is also known as NaCl structure. The structure is illustrated in Fig. 5(b). In this structure, O$^{2−}$ ions occupy Cl$^−$ sites, and Mg$^{2+}$, Li$^+$, Ti$^{4+}$ together occupy Na$^+$ site randomly.

Figure 6 shows XRD pattern of the 0.33 Li$_2$MgTiO$_4$−0.67 Li$_2$TiO$_3$ ceramic sample sintered at 1225°C for 4 h. There are two phases, Li$_2$TiO$_3$ and Li$_2$MgTiO$_4$.

Figure 7 demonstrates dielectric properties of the 0.33 Li$_2$MgTiO$_4$−0.67 Li$_2$TiO$_3$ ceramic samples as a function of sintering temperature. $Q \times f$ value and dielectric constant of
the samples are first increased as the sintering temperature is increased from 1150°C to 1200°C, and then kept steady. $Q \times f$ value is about 80 000 GHz when the sintering temperature is above 1200°C and the dielectric constant is about 24.7. Density of the samples is first increased as the sintering temperature is increased from 1150°C to 1250°C, and then slightly decreased as the temperature is further increased. The decrease in density may be attributed to abnormal grain growth. The maximum density of the samples is 3.34 g/cm3 at 1250°C. At this temperature, the sample has $Q \times f$ value and dielectric constant of 80 476 GHz (at 7.68 GHz) and 24.7, respectively. Temperature coefficients of all the samples are about +3 ppm/°C, and the value is +3.2 ppm/°C at 1250°C.

SEM images of the 0.33 Li$_2$MgTi$_3$O$_8$–0.67 Li$_4$TiO$_4$ ceramic samples are shown in Fig. 8. The grain size is increased with increasing sintering temperature. The abnormal grain growth, as shown in Fig. 8(d), could be the reason for the decrease in density.

In Li-rich region of the LMTO systems, two exemplary ceramic systems, (a) 0.33 Li$_4$TiO$_4$–0.67 MgO and (b) 0.5 Li$_2$MgTiO$_4$–0.5 Li$_4$TiO$_4$, as shown in the right side of Fig. 3 were studied. Both samples exhibit a low sintering temperature of less than 800°C and a low $Q \times f$ value.

Both ceramic samples have similar phase composition, as evidenced by the XRD patterns in Fig. 9. The major phase is Li$_2$MgTiO$_4$. Minor phases, such as MgO, Li$_2$TiO$_3$, and Li$_2$CO$_3$ are also identified, when the sintering temperature is below 700°C. As sintering temperature is increased, the Li$_2$MgTiO$_4$ phase becomes more and more dominant and no secondary phase is formed even the sintering temperature reaches 1000°C.

Microwave dielectric properties of the 0.5 Li$_2$MgTiO$_4$–0.5 Li$_4$TiO$_4$ and 0.33 Li$_4$TiO$_4$–0.67 MgO ceramic samples sintered at different temperatures are shown in Fig. 10. With increasing temperature, $Q \times f$ value, dielectric constant, and density of the samples are first increased, and then decreased. Fluctuation of the curve is due to the experimental error. The maximum values of the three properties are obtained at about 760°C. The 0.33 Li$_4$TiO$_4$–0.67 MgO ceramic sintered at 760°C has $Q \times f$ value = 26 000 GHz (at 10.72 GHz), $\varepsilon_r = 12.8$, $\tau_f = -78.4$ ppm/°C. The 0.5 Li$_2$MgTiO$_4$ ceramic sintered at 760°C has $Q \times f$ value = 20 000 GHz (at 9.65 GHz), $\varepsilon_r = 16.5$, $\tau_f = -48.7$ ppm/°C. The decrease in $Q \times f$ value and density of the samples sintered at high temperatures may be due to the abnormal grain growth.

Figure 11 shows SEM images of the 0.5 Li$_2$MgTiO$_4$–0.5 Li$_4$TiO$_4$ and 0.33 Li$_4$TiO$_4$–0.67 MgO samples sintered at three temperatures. The grain size is increased with sintering temperature. At 800°C, giant grains are formed in the 0.5 Li$_2$MgTiO$_4$–0.5 Li$_4$TiO$_4$ sample. The pores among the grains could also cause a decrease in density and the $Q \times f$ value.
IV. Conclusion

Dielectric properties and phase composition of the \(\text{Li}_2\text{O–MgO–TiO}_2 \) ternary ceramic system were discussed. A pseudo phase diagram of the LMTO system was established, which shows an overall phase composition in Ti-rich region of the LMTO system. Dielectric properties of some important single-phase ceramics were studied. The 0.33 \(\text{Li}_2\text{MgTi}_3\text{O}_8 \)–0.67 \(\text{Li}_2\text{TiO}_3 \) ceramic system possesses excellent dielectric properties, with \(Q \times f \) value of 80,476 GHz (at 7.68 GHz), dielectric constant of 24.7 and temperature coefficient of +3.2 ppm/°C when the sample is sintered at 1250°C. The two Li-rich ceramics selected in the study have low sintering temperature of less than 800°C. They have \(Q \times f \) values of lower than 30 000 GHz, dielectric constant of about 15 and large negative temperature coefficients. No new single-phase ceramic in the Li-rich region was found.

Acknowledgments

This work was supported by the Young Star Project of Science and Technology of Shaanxi Province (2016YFXX0029), the Fundamental Research Funds for the Central University, the Natural Science Foundation of Jiangsu Province (BK2014213), and the 111 Project of China (B14040). Dr. Zhou also thank China Scholarship Council (CSC) for supporting him as an academic visitor at University of Sheffield. The SEM work was done at International Center for Dielectric Research (ICDR), Xi’an Jiaotong University, Xi’an, China and the authors thank Ms. Yan-Zhu Dai for her help in using SEM.

References

11M. M. Zhang, L. X. Li, W. S. Xia, and Q. W. Liao, “Structure and Properties Analysis for \(\text{MgTi}_3\text{O}_7 \) and \((\text{Mg}_{0.97}\text{M}_{0.03})\text{Ti}_2\text{O}_5 \) (\(M = \text{Ti}, \text{Zr}, \text{Sn} \)) Microwave Dielectric Materials,” \textit{J. Alloys Compd.}, \textit{537}, 76–9 (2012).

12Y. B. Chen, “Dielectric Properties and Crystal Structure of \(\text{Mg}_2\text{Ti}_3\text{O}_4 \) Substituting \(\text{Mg}^{2+} \) With \(\text{Zn}^{2+} \) and \(\text{Co}^{2+} \),” \textit{J. Alloys Compd.}, \textit{513}, 481–6 (2012).

