Fabrication of magnetic carbonaceous solid acids from banana peel for the esterification of oleic acid†

Rui-Lin Liu,*ab Xiang-Yu Gao,a Lei An,a Jin Ma,a Ji-Fang Zhanga and Zhi-Qi Zhang*a

Magnetic carbonaceous solid acids (MCSAs), which are important materials with many practical and research applications, have recently attracted much attention. In this work, a valuable type of MCSA with superparamagnetism was synthesized using a facile strategy, i.e., integrated fast pyrolysis of Fe(III)-based complexes and vapor-phase sulfonation from waste banana peel (BP). This versatile strategy enables the simple preparation of MCSAs with easily tunable surface areas (156–1097 m² g⁻¹) and pore volumes (0.17–0.74 cm³ g⁻¹), and relatively large average mesoporous sizes (6.1–11.4 nm), by simply varying the dosage of Fe(III) ions. The as-prepared MCSAs have excellent catalytic activity in the esterification of oleic acid with methanol, far higher than that of the commercial Amberlyst-15, sulfonated activated carbon and niobic acid under the same conditions. In particular, the catalytic activity of the obtained MCSAs rivals that of a homogeneous H₂SO₄ catalyst. The present work provides an inexpensive and environmentally friendly method to synthesize MCSAs from waste BP and may contribute to a holistic approach for biomass conversion.

1. Introduction

Biodiesel is a sustainable, biodegradable and non-toxic diesel fuel substitute that is widely used worldwide. It can be made from vegetable oils, animal fats, and waste oils from the food industry. Biodiesel can be easily produced by catalytic transesterification of triglycerides with alcohols or catalytic esterification of free fatty acids (FFAs) in the presence of base or acid catalysts. However, when the raw materials contain a high percentage of FFAs, alkaline catalysts react with the FFAs to form soaps. This reaction not only consumes the catalyst, but also reduces the yield of the biodiesel product; this makes the purification of biodiesels extremely difficult. In such cases, an acid catalyst is preferable, because it can reduce saponification. Compared with homogeneous acid catalysts, heterogeneous solid acid catalysts (HSACs) are preferred, because they are greener and recyclable, and many types of HSACs have been successfully developed for FFA esterification with methanol. However, the reported HSACs for FFA esterification are unsatisfactory, because of the low densities and low accessibility of the acid sites, easy deactivation, and high cost; these factors hinder their use in large-scale production. It is therefore still necessary to develop simple, low-cost, and green methods for synthesizing novel HSACs for biodiesel production.

Compared with conventional HSACs, magnetic solid acids can be easily separated in the presence of an external magnetic field, particularly in viscous or solid reaction mixtures. Lately, a series of magnetic solid acids was synthesized by sulfonation of a series of particles consisting of Fe₅O₄ cores with various shell materials. However, many of the reported magnetic solid acids are unsatisfactory in acid-catalyzed reactions. Additionally, the preparation of these magnetic solid acids involves complex synthetic procedures, and often requires expensive or toxic reagents, impeding large-scale production.

Carbon-based solid acids (CSAs) are ideal for esterification reactions owing to such advantages as chemical inertness, mechanical stability, structural diversity and surface hydrophobicity. Study results indicate that the catalytic activity of a CSA is highly dependent upon the starting materials. However, most studies have focused mainly on a limited number of feedstocks, especially pure carbohydrates, such as glucose, starch, sucrose, and cellulose. Additionally, the conventional preparation methods for magnetic CSAs are highly complex. A magnetic core is first fabricated, followed by coating with a shell with a porous carbon layer, and sulfonation of the magnetic carbon. Thus, it is of great interest to synthesize magnetic CSAs by a low-cost precursor and facile route as well as to investigate their structures and properties.

Bananas are a worldwide-consumed tropical fruit. BP is their main residue, and it has been mainly used in composting, animal feed, and the production of proteins, ethanol, methane,
pectin, and enzymes. In particular, BP is rich in a variety of functional groups, including carboxyl, hydroxyl, and amide groups, and can be easily modified and assembled using metal ions. Thus, it is highly desirable to develop green and economical ways to deal with waste BP, as well as to utilize the waste to produce staple or value-added products.

Herein, a facile strategy for the fabrication of magnetic CSAs was developed by using waste BP as a precursor, involving the pyrolysis of Fe(III)-based complexes followed by vapor-phase sulfonation. This process not only provides magnetic CSAs, but also produces bio-oil, which can be used for fuel and chemical production. To obtain highly porous magnetic CSA supports, the influence of the Fe(m) ion concentration was assessed. The catalytic activities of the as-made materials were investigated by the esterification of oleic acid (OA) with methanol. The physical and chemical properties of the as-made materials were also characterized in detail, and the structure-function relationship was investigated with Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy and other techniques.

2. Experimental

2.1 Fabrication of the magnetic porous carbons (MPCs)

Briefly, BP fragments (1.2 kg) were completely submerged in an aqueous FeCl₃ solution (1.8 L) of a certain concentration for 1 week at 80 °C. In this process, the –COOH and –OH groups on the BP pore surfaces easily coordinated with adsorbed Fe ions, as the solvent gradually evaporated, and gray-black Fe-based composites were obtained after drying at 100 °C. The Fe-based composites were carbonized at 650 °C at a heating rate of 1 °C min⁻¹ for 3 h under nitrogen. The volatiles produced during pyrolysis were removed by a nitrogen flow of 300 mL min⁻¹, and condensed with cold ethanol to give a bio-oil. The resultant black monoliths were smashed, and washed with deionized water and anhydrous ethanol to remove uncoordinated Fe ions and organic impurities, and dried at 100 °C for 24 h, to give magnetic porous materials (Fig. S1†). The as-synthesized samples were denoted by MPC-ₓ, where x indicates the concentration (M) of the FeCl₃ solution. For comparison of the physical characteristics, another carbon material was synthesized by direct pyrolysis of BP (DPBP) under the same conditions.

2.2 Synthesis of MPCs-ₓ-SO₃H catalysts

The sulfonation of MPC-ₓ was completed by the method of vapor-phase sulfonation with slight modification. Briefly, the MPC-ₓ samples were sulfonated using fuming sulfuric acid (10 mL of fuming sulfuric acid to 1 g of solid MPC-ₓ) at 393 K for 8 h in a Teflon-lined autoclave. After sulfonation the mixture was cooled to room temperature, and then added to a beaker containing deionized water. Subsequently, the suspension was filtered, washed with deionized water until the pH of wash water was about 7-8 and dried at 80 °C for 4 h. After that, the samples were magnetic attracted with an external magnet and collected for further use (Fig. S1†). For comparison of the catalytic properties, DPBP and activated carbon (AC) were sulfonated using the same method (denoted by DPBP-SO₃H and AC-SO₃H, respectively).

2.3 Esterification of OA with methanol

The liquid-phase esterification of OA with methanol, which was used as the model reaction, was performed in a three-necked round-bottomed flask connected to a water-cooled condenser. Briefly, OA (0.15 g) was introduced into the flask, and the temperature was increased to 80 °C. After the OA had melted, warm methanol (5 g) and the catalyst (0.15 g) were quickly added, and the mixture was mechanically stirred and kept at 80 °C for 8 h in an oil bath. The weight ratio of OA to methanol was 1:33, and the concentration of the catalyst in the reaction solution was 3 wt%. After reaction for the specified time interval, the catalyst was separated from the mixture using a permanent magnet, and the collected mixture (200–600 μL) was filtered through a membrane (pore size 0.22 μm). Aliquots (200 μL) of the resulting solution were withdrawn and kept for 10 min at 70 °C under vacuum to remove the methanol, followed by the addition of anhydrous n-hexane (200 μL) containing methyl palmitate (10 mg mL⁻¹) as an internal standard. Gas chromatography was performed using a Shimadzu 2010 instrument equipped with a flame ionization detector and a poly(ethylene glycol) capillary column (30 m × 0.25 mm × 0.25 μm). The performance of the MPCs-ₓ-SO₃H catalysts was compared with that of H₂SO₄ (0.15 g), Amberlyst-15 (0.15 g), and niobic acid (0.15 g).

The catalytic activity was evaluated based on the yield of methyl oleate, Y (%), and the reaction turnover frequency (TOF) (min⁻¹). Y (%) is calculated as follows:

\[Y = \frac{\text{yield}_{\text{esters}}}{A_{\text{ester}}} \times \frac{A_{\text{ester}} \times m_{\text{ester}}}{A_{\text{internal}} \times m_{\text{internal}}} \times 100\% \]

where \(A_{\text{ester}} \) is the peak area of the fatty acid methyl esters, \(A_{\text{internal}} \) is the peak area of the internal standard, \(m_{\text{internal}} \) is the mass of the internal standard, \(m_{\text{esters}} \) is the mass of fatty acid methyl esters and \(f_{\text{ester}} \) is the correction factor of the main fatty acid methyl esters.

The TOF for OA esterification was calculated from the amount of methyl oleate formed, under the initial reaction rate within 2 h. The TOF value is obtained using eqn (2):^³

\[\text{TOF} = \frac{M_D}{\phi M_{\text{AS}}} \]

where \(M_D \) is the number of moles of methyl oleate produced in reaction time \(\phi \), and \(M_{\text{AS}} \) is the number of moles of acid sites, determined by ion-exchange titration.

3. Results and discussion

3.1 Characterization of magnetic CSAs

The treatment of BP with different concentrations of Fe(m) under the same conditions gave different textures. SEM images show that MPC-0.4 and MPC-0.4-SO₃H, and MPC-0.8 and MPC-
The Raman spectra of the MPC-0.4 and MPC-0.4-SO3H samples (Fig. 2b) have a distinct pair of broad bands, at 1340 (D band) and 1584 cm⁻¹ (G band). The D band is associated with disorder, allowing the zone edge modes of the graphite structure to become active as a result of lack of long-range order in the amorphous and quasi-crystalline forms of carbon materials. The G band corresponds to the E₂g mode in the basal plane of crystalline graphite. The peak intensity ratio of the D and G bands (I_D/I_G) generally provides a useful index for comparing the degrees of crystallinity of carbon materials: the smaller the value of I_D/I_G is, the higher the degree of ordering in the carbon material. All of the samples have similar Raman spectra, but their I_D/I_G ratios vary slightly (Fig. 2b and S6†). The I_D/I_G value of MPC-x-SO3H is slightly higher than that of MPC-x, suggesting that the incorporation of sulfonic acid groups reduces the average size of the sp² carbon domains.

TEM images show that MPC-0.4 has a wire-like or nanosheet-like microstructure (Fig. 3a). The TEM images of MPC-0.4 and MPC-0.4-SO3H clearly show that well-crystallized Fe₃O₄ nanoparticles are distributed in the surface of the amorphous carbon matrix (Fig. 3b–f). Furthermore, close observation of the TEM images shows that iron oxide nanoparticles in the obtained composites have a unique semi-exposed morphology, with one part of the nanoparticle partially exposed to the pore channels and the other part tightly trapped in the carbon framework (Fig. 3c and f). These clearly confirm that some of the Fe₃O₄ nanoparticles are effectively incorporated into the carbon framework, and the embedded Fe₃O₄ nanocrystals have a grain size range of 5–8 nm (Fig. 3f). Careful examination of the corresponding high-resolution TEM image shows well-resolved lattice fringes with an interplanar distance of 0.25 nm, from the (311) plane of Fe₃O₄, in the MPC-0.4-SO3H sample (Fig. 3g). The other samples also have similar characteristics (Fig. S7–S10†). To obtain further insights into the nanoparticle locations in the carbon matrix, the Fe₃O₄ particles were...
removed from the MPC-0.4-SO₃H sample by soaking in dilute HCl solution; a large number of honeycomb-like nanopores remained (Fig. 3h). The result fully confirms that the carbon matrix efficiently prevents the Fe₃O₄ nanoparticles from leaching out and aggregating during the oxidation treatment, i.e., most of the Fe₃O₄ nanoparticles are wrapped with carbon layers. It was found that the porous carbon layer on the surface of the Fe₃O₄ cores can not only stabilize the Fe₃O₄ against aggregation and prevent the oxidation of Fe₃O₄, but also can be coordinated or grafted with −SO₃H groups as a Brønsted acid for many practical applications in the chemical industry.⁹,¹⁰ In contrast, neither wire-like nor porous structures are detected in the SEM and TEM images of DPBP-SO₃H and DPBP (Fig. S3e–h and S10f–h†). TGA was used to determine the chemical composition of the MPC-x-SO₃H samples, at a heating rate of 10 °C min⁻¹ in an air atmosphere. The sample was heated to 650 °C, so that Fe₃O₄ was oxidized to Fe₂O₃ and carbon was oxidized to carbon dioxide. Based on the remaining weight (of Fe₂O₃), the amount of Fe₃O₄ was calculated to be between 7.54 and 21.46 wt% after sulfonation (Fig. S11†).

As shown in Fig. 4a, XPS of MPC-0.6, MPC-0.6-SO₃H, and DPBP-SO₃H clearly reveals six peaks, with Si2p (103.4 eV), S2p (169.5 eV), C1s (284.5 eV), N1s (400.4 eV), O1s (531.6 eV), and Fe2p (713.5 eV).⁹ For comparison, the Fe2p peaks in the MPC-0.6 and MPC-0.6-SO₃H spectra, and the S2p peaks in the MPC-0.6-SO₃H and DPBP-SO₃H were examined. The C1s spectrum of...
MPC-0.6-SO3H includes four peaks, with binding energies that can be differentiated via deconvolution (Fig. 4b). These peaks can be assigned to the carbon atoms in C−S (283.9 eV), C=−C/C=−C (284.5 eV), C−O (phenolic hydroxyl and/or ether, 285.4 eV), and C=−O (carbonyl and/or quinone, 286.5 eV) functional groups.21,22 In contrast, the C1s spectrum of MPC-0.6 prior to sulfonation does not contain carbon atoms in the form of C−S (Fig. S12†). To further validate this result, the S2p spectrum (Fig. 4c) of MPC-0.6-SO3H was deconvoluted into several single peaks, which correspond to S−C (168.1 eV), S−O (166.9 and 169.0 eV), and S=O (169.9 eV) bonds23,24 these are consistent with the FTIR spectra (Fig. S13†) and further verify the presence of SO3H groups. The O1s spectra of MPC-0.6 and MPC-0.6-SO3H show the presence of Fe=O and C−O−Fe bonds (Fig. S12 and S14†), suggesting the linkage of Fe2O3 with porous carbon through this bond.

The XRD patterns of Fe2O3 and γ-Fe2O3 nanoparticle are similar; therefore MPC-0.6 and MPC-0.6-SO3H were further identified by XPS. The Fe2p high-resolution XPS pattern in Fig. 4d shows that the binding energy values of Fe2p3/2 and Fe2p1/2 are 711.3 and 725.0 eV, respectively, which is consistent with previous reports on Fe2O3 nanoparticles.25 Furthermore, the absence of an obvious satellite at 719.0 eV indicates that the MPC-x samples contain Fe2O3 rather than γ-Fe2O3, which is consistent with the XRD results. The present result is very similar to the sulfonation of magnetic carbon with sulfuric acid.19 In addition, the densities and distributions of the C, O, S, and Fe elements in MPC-0.6-SO3H were evaluated using XPS microarea mapping (Fig. S15†). S is homogeneously distributed over the entire surface of MPC-0.6-SO3H, suggesting the effective sulfonation of the magnetic carbonaceous precursor. Fe is also homogeneously distributed over the entire surface of MPC-0.6-SO3H, which is consistent with the TEM and EDX results. The C1s and S2p spectra of DPBP-SO3H show that the SO3H group was successfully grafted onto the DPBP surface by sulfonation (Fig. S14†). Compared with those in MPC-0.6-SO3H, the density and distribution of S in DPBP-SO3H is very sparse.

The nitrogen sorption isotherms of the MPC-x and MPC-x-SO3H samples (Fig. S16–S18) exhibit combined type I and type IV isotherm characteristics,26 with a steep increase at low relative pressure, suggesting microporous characteristics. Additionally, the broad hysteresis loop in the medium relative pressure range indicates the presence of interstitial porosity. The results show that the surface areas and total pore volumes of the MPC-x samples are higher than those of DPBP (Table S1†). This means that the Fe-based composite acts as a self-supporting template, which can enhance the formation of porous structures during biomass carbonization, mainly because the dehydration and decomposition of the Fe-based composite promotes the release of volatile matter during biomass pyrolysis; this increases the surface area and pore volume. Similar phenomena have been observed in the carbonization of Fe-based metal–organic frameworks.25,26 The residual Fe can also catalyze the formation of porous structures during carbonization. This phenomenon has also been observed in the carbonization of FeCl3-impregnated pinewood sawdust and polymer/biomass composites.9 However, the main contribution to the surface area comes from the carbon support structure.28 The effect on pore formation of varying the Fe(III) concentration was investigated, for magnetic carbons produced at Fe(III) concentrations of 0.2–1.0 M. As x changes from 0.2 to 1.0, the BET surface area and total pore volume of MPC-x first increase from 180–505 m^2 g^-1 and 0.19–0.39 cm^3 g^-1, respectively, and then decrease and remain at about 380 m^2 g^-1 and 0.35 cm^3 g^-1, respectively. The average mesopore size of between 6.15 and 11.38 nm (Table S1†) is in the large nanoscale range. The surface areas and pore volumes of MPC-0.2-SO3H and MPC-0.4-SO3H are 156.7 m^2 g^-1 and 0.17 cm^3 g^-1, and 173.2 m^2 g^-1 and 0.26 cm^3 g^-1, respectively, which are significantly lower than those of MPC-0.2 (180.7 m^2 g^-1 and 0.19 cm^3 g^-1) and MPC-0.4 (505.1 m^2 g^-1 and 0.39 cm^3 g^-1). These results suggest that the MPC porous structure was partly damaged by sulfonation, and also indicates the successful grafting of −SO3H functional groups.30 However, the surface areas and pore volumes of MPC-0.2-SO3H, MPC-0.4-SO3H, and MPC-1.0-SO3H are clearly higher than those of MPC-0.6, MPC-0.8, and MPC-1.0, respectively. This can be mainly ascribed to the corrosion of some of the Fe2O3 nanoparticles during sulfonation. The average PSDs show that the average pore sizes of all the sulfonated MPC-x samples were between 2.35 and 3.58 nm (Fig. S16, Table S1, Fig. S17 and S18†). These findings reveal that the vast majority of the pores fell in the mesoporous range for MPC-x-SO3H, whereas DPBP-SO3H and AC-SO3H contain only micropores (Table S1†). Overall, the results show that this versatile strategy not only gives materials with high BET surface areas and large pore volumes, but also provides preferable stability under high temperature and hydrolytic conditions for MPC-x-SO3H (Fig. S19†).

The synthesis of MPC precursor materials is the primary step for MPC-x-SO3H synthesis, as follows (Fig. S20†). It is known that BP is composed of biopolymers in plant cell walls, such as celluloses, hemicelluloses, pectins, lignins, and proteins.29 The −COOH and −OH groups on the surfaces of the BP pores therefore easily coordinate with adsorbed Fe(III) ions, with gradual evaporation of the solvent, giving grey-black Fe(III)/Fe(OH)3 + 3HCl \rightarrow 2Fe3O4 + 2CO \uparrow + 3H2O \uparrow \text{[3]}
\begin{eqnarray}
\text{FeCl}_3 + 3\text{H}_2\text{O} \rightarrow \text{Fe(OH)}_3 + 3\text{HCl} \uparrow \text{[3]}
\end{eqnarray}
\begin{eqnarray}
\text{Fe(OH)}_3 \rightarrow \text{FeO(OH)} + \text{H}_2\text{O} \text{[4]}
\end{eqnarray}
\begin{eqnarray}
6\text{FeO(OH)} + 4\text{H}_2 \rightarrow 2\text{Fe}_3\text{O}_4 + 4\text{H}_2\text{O} \uparrow \text{[5]}
\end{eqnarray}
\begin{eqnarray}
6\text{FeO(OH)} + 4\text{C} \rightarrow 2\text{Fe}_3\text{O}_4 + 2\text{CO} \uparrow \text{[6]}
\end{eqnarray}
\text{FeCl}_3 + 3\text{H}_2\text{O} \rightarrow \text{Fe(OH)}_3 + 3\text{HCl} \uparrow \text{[3]}
\begin{eqnarray}
\text{Fe(OH)}_3 \rightarrow \text{FeO(OH)} + \text{H}_2\text{O} \text{[4]}
\end{eqnarray}
\begin{eqnarray}
6\text{FeO(OH)} + 4\text{H}_2 \rightarrow 2\text{Fe}_3\text{O}_4 + 4\text{H}_2\text{O} \uparrow \text{[5]}
\end{eqnarray}
\begin{eqnarray}
6\text{FeO(OH)} + 4\text{C} \rightarrow 2\text{Fe}_3\text{O}_4 + 2\text{CO} \uparrow \text{[6]}
\end{eqnarray}
6FeO(OH) + 4CO → 2Fe₃O₄ + 4CO₂† (7)

Furthermore, FeCl₃ easily dehydrates carbohydrate polymers at high temperatures and can change the decomposition pathway of lignocellulosic biomass during fast pyrolysis, inhibiting the formation of heavy tars, which can block porous structures, thus improving the formation of open pores in the carbon matrix. Meanwhile, the formed Fe species, i.e., FeO(OH) and Fe₃O₄, may act as in situ catalysts in fast pyrolysis, generating porous structures and favoring the formation of a dense layer-like “Fe template”, which limits the growth of carbon atoms along the two-dimensional plane. Overall, the BP first experiences simultaneous adsorption/coordination and hydrolysis to a Fe-based composite, and then undergoes pyrolysis and sulfonation to produce MPC-ω-x-SO₃H.

3.2 Acid site density

It has been reported that -SO₃H functional groups can be added to a catalyst surface by vapor-phase sulfonation. The results are shown in Table 1. MPC-0.4-SO₃H has a significantly larger acid site density than MPC-1.0-SO₃H, although the BET surface area of MPC-1.0-SO₃H is four times that of MPC-0.4-SO₃H; the acid site density of MPC-0.4-SO₃H is twice that of MPC-1.0-SO₃H, which is opposite to the surface area trend. This is probably because sulfonation increases the BET surface area of MPC-1.0, by etching the Fe₃O₄ nanoparticles or opening small pores, which causes a decline in the H₂SO₄ concentration. The low concentration of H₂SO₄ weakens sulfonation of the MPC-1.0 surface. The acid-exchange capacities of the other MPC-x-SO₃H samples were above 1.70 mmol H⁺ g⁻¹ and even reached 2.68 mmol H⁺ g⁻¹ for MPC-0.8-SO₃H; this value is higher than those of most of the other sulfonic acid-functionalized mesoporous materials reported so far.

The XPS results indicate that the S in MPC-x-SO₃H is mainly associated with SO₃H groups, so the SO₃H content of MPC-x-SO₃H can be estimated from the S content. The S content of MPC-0.6-SO₃H and DPBP-SO₃H is 4.8 and 0.9 wt%, respectively; which is very close to the results of elemental analyses (Table S1†).

3.3 Catalytic activities for esterification of OA

The methyl oleate yields as a function of reaction time are shown in Fig. 3a. The values of the maximum yields obtained in 8 h using the solid catalysts are shown in Table 1. It can be clearly seen that MPC-0.8-SO₃H gives the best catalytic activity. Based on the yields, the order of the catalytic activities of the solid catalysts is MPC-0.8-SO₃H > MPC-0.2-SO₃H > MPC-0.6-SO₃H > MPC-0.4-SO₃H = Amberlyst-15 > MPC-1.0-SO₃H > AC-SO₃H > DPBP-SO₃H > niobic acid. It is worth pointing out that the catalytic activities of MPC-0.2-SO₃H (90.3% conversion) and MPC-0.8-SO₃H (94% conversion) are comparable to that of H₂SO₄ (99% conversion) when the reaction time is 8 h.

The initial rates and TOFs of these solid catalysts are shown in Table 1. It should be noted that the initial rates and TOFs of MPC-0.2-SO₃H and MPC-0.8-SO₃H are significantly higher than those of Amberlyst 15. Additionally, the initial rates and TOFs of the other MPC-x-SO₃H catalysts are significantly higher than

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Acid capacity</th>
<th>Initial rate</th>
<th>Conv.</th>
<th>TOF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(mmol H⁺ g⁻¹)</td>
<td>(10⁻³ mmol H⁺ m⁻² s⁻¹)</td>
<td>(10⁻² mmol g⁻¹ min⁻¹)</td>
<td>(8 h, %)</td>
</tr>
<tr>
<td>MPCs-0.2-SO₃H</td>
<td>1.79</td>
<td>11.5</td>
<td>1.99</td>
<td>90</td>
</tr>
<tr>
<td>MPCs-0.4-SO₃H</td>
<td>1.83</td>
<td>10.6</td>
<td>1.00</td>
<td>77</td>
</tr>
<tr>
<td>MPCs-0.6-SO₃H</td>
<td>2.47</td>
<td>2.3</td>
<td>1.33</td>
<td>82</td>
</tr>
<tr>
<td>MPCs-0.8-SO₃H</td>
<td>2.68</td>
<td>2.2</td>
<td>1.75</td>
<td>94</td>
</tr>
<tr>
<td>MPCs-1.0-SO₃H</td>
<td>1.43</td>
<td>2.3</td>
<td>1.19</td>
<td>63</td>
</tr>
<tr>
<td>DPBP-SO₃H</td>
<td>0.58</td>
<td>7.3</td>
<td>0.40</td>
<td>27</td>
</tr>
<tr>
<td>AC-SO₃H</td>
<td>1.02</td>
<td>1.8</td>
<td>0.52</td>
<td>43</td>
</tr>
<tr>
<td>Amberlyst-15</td>
<td>4.7</td>
<td>104.4</td>
<td>1.37</td>
<td>76</td>
</tr>
<tr>
<td>Niobic acid (Nb₂O₅·nH₂O)</td>
<td>0.32</td>
<td>2.5</td>
<td>0.21</td>
<td>19</td>
</tr>
</tbody>
</table>

*Calculated by titration experiment. †Reaction conditions: acid catalyzed (150 mg catalyst) esterification of OA (150 mg) with methanol (5 g) at 80 °C for 2 h.
MPC-0.6-SO\textsubscript{3}H are very similar to those of MPC-0.8-SO\textsubscript{3}H, but (9.4 nm). Similarly, the surface area and amount of acid sites of mesopores (11.4 nm), are higher than those by MPC-0.4-SO\textsubscript{3}H.

3.4 Kinetics of acid catalyzed esterification of OA

The kinetic parameters for the esterification reaction were determined using the Arrhenius equation (see the ESI†). The results indicate that the reaction rate constant obtained with the MPC-x-SO\textsubscript{3}H catalysts are significantly higher than that obtained with Amberlyst-15 (Table S2 and Fig. S21†). The activation energies range from 26 to 36 kJ mol-1. These values are lower than those for Amberlyst-15 and other reported solid acids.31,32 The present catalysts are therefore promising candidates for use in esterification, because their activities are comparable to those of mineral acids and higher than those of other solid acids.

3.5 Water tolerance

The water tolerance of MPC-0.2-SO\textsubscript{3}H, MPC-0.4-SO\textsubscript{3}H, MPC-0.6-SO\textsubscript{3}H, and MPC-0.8-SO\textsubscript{3}H was compared with that of Amberlyst-15 in the esterification of OA and methanol. The initial rates and TOFs of the four as-prepared catalysts slowly decreased linearly with the increasing addition of up to 5.0 wt% water to the feedstock. In contrast, the initial rate and TOF of Amberlyst-15 sharply decreased on addition of up to 1.0 wt% water to the feedstock (Fig. S22†). This is because the acid strength of the catalyst is decreased by the formation of hydration spheres around the sulfonic acid groups. Furthermore, water increases the polarity around the acid moieties, and this hinders the access of hydrophobic long-chain carboxylic acids. The acid strength of the phenylsulfonic acids in Amberlyst-15 is higher than those of the MPC-x-SO\textsubscript{3}H materials; i.e., Amberlyst-15 has a higher water-absorption capacity than MPC-x-SO\textsubscript{3}H. The as-prepared catalysts contain nitrogen atoms in the forms of pyridine, quaternary nitrogen, pyrroles, and pyridine N-oxide (Fig. S12b†), and -COOH, and these easily form hydrogen bonds with water, further decreasing the initial rates and TOFs. Although the presence of water lowers the activity of MPC-x-SO\textsubscript{3}H and Amberlyst-15, the MPC-x-SO\textsubscript{3}H catalysts, which have high surface areas and pore volumes, have a better water tolerance than Amberlyst-15 in esterification.

Additionally, the sulfonated carbon (e.g., MPCs-0.8-SO\textsubscript{3}H, acid capacity: 2.68 mmol H+ g-1, 0.5 g) was dispersed in deionized water (50 mL) and the solution was stirred at 95 °C for 5 h. After removing the catalyst by filtration, the filtrate was titrated using a pH meter and standardized 0.01 mol L-1 NaOH solution. From the amount of NaOH solution consumed, the amount of acid groups leached from the MPCs-0.8-SO\textsubscript{3}H was calculated to be 19.8% relative to the initial acid groups. Compared with previous results (26–29%),18 it can be seen that the as-made MPCs-0.8-SO\textsubscript{3}H has moderate stability under the same hydrolytic conditions.

Fig. 5 Comparison of catalytic activities in conversion of OA and methanol, reaction conditions: acid catalyzed (150 mg catalyst) esterification of OA (150 mg) with methanol (5 g) at 80 °C (a); magnetization curves of the MPCs-0.2, MPCs-0.2-SO\textsubscript{3}H, MPCs-0.8 and MPCs-0.8-SO\textsubscript{3}H at room temperature (b). Insert: enlargement of the −200 to 200 Oe region.
3.6 Reusability and isolation of catalysts

The yield of methyl oleate and the TOP for MPC-x-SO3H (x = 0.2, 0.4, 0.6, 0.8) slowly declined after four cycles, whereas the catalytic activity of Amberlyst 15 sharply decreased after the first run (Fig. S23†). The good recyclability of MPC-x-SO3H is attributed to the high stability of porous carbon and strong attachment of sulfonic acid groups to the substrate. Representative XPS results for the fresh MPC-0.8-SO3H catalyst and the catalyst after four cycles (Fig. S24†) showed that there were no obvious changes in the surface element content of C, O, S, and Fe; this indicates the high stability of MPC-0.8-SO3H in esterification.

Catalyst isolation is an important factor in practical applications.† The magnetic hysteresis curves of the samples showed nonlinear and reversible behavior, with superparamagnetism (Fig. 5b). The saturation magnetizations of MPC-0.2, MPC-0.2-SO3H, MPC-0.8, and MPC-0.8-SO3H are 9.71, 4.28, 21.42, and 13.07 emu g⁻¹, respectively, which are sufficient for the separation of the particles by an external magnetic field (Fig. S25†).

To the best of our knowledge, this is the first report of the synthesis of magnetic CSAs from waste BP via a facile tactic for the esterification of oleic acid. The good catalytic activity of MPC-0.2-SO3H and MPC-0.8-SO3H is attributed to their synergistic combination of a unique porous carbon structure and three functional groups (–SO3H, –COOH, and phenolic OH groups) in adequate amounts. Researchers have also proved that sulfonated ACs contain phenolic-OH, –COOH, and –SO3H groups and therefore exhibit better catalytic activity during liquid-phase acid-catalyzed reactions compared to other solid acids.† Furthermore, the hybrid Fe3O4 nanocrystalline materials enables the easy separation of the catalyst from the reaction mixture, so the catalysts meet the demands of environmental protection. The materials presented here therefore have great potential as stable and highly active CSAs (Table S3†).

4. Conclusions

Magnetic carbonaceous solid acids with variable surface areas and pore volumes were fabricated by using a facile strategy from BP. The high acid densities and hydrophobic surface properties of the as-obtained magnetic CSAs make them highly efficient catalysts for biodiesel production. The large pores favor the diffusion of large organic molecules, contributing to an enhancement of catalytic ability. The results show that these materials have better catalytic properties than Amberlyst-15. Their excellent magnetic separation abilities make the production more convenient and robust. These findings offer a new pathway to the fabrication of magnetic CSAs and develop a holistic approach to biomass conversion and environmental protection.

Acknowledgements

This project was supported by the National Natural Science Foundation of China (21275098), and National Undergraduate Innovation Program of China (201410718010).

Notes and references