Interface effect on thermal conductivity of carbon nanotube composites

Ce-Wen Nan, Gang Liu, Yuanhua Lin, and Ming Li

Citation: Appl. Phys. Lett. 85, 3549 (2004); doi: 10.1063/1.1808874
View online: http://dx.doi.org/10.1063/1.1808874
View Table of Contents: http://aip.scitation.org/toc/apl/85/16
Published by the American Institute of Physics

Articles you may be interested in

Effective thermal conductivity of particulate composites with interfacial thermal resistance
Journal of Applied Physics 81, 6692 (1998); 10.1063/1.365209

Carbon nanotube composites for thermal management
Applied Physics Letters 80, 2767 (2002); 10.1063/1.1469696

Role of thermal boundary resistance on the heat flow in carbon-nanotube composites
Journal of Applied Physics 95, 8136 (2004); 10.1063/1.1736328

Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites
Applied Physics Letters 87, 161909 (2005); 10.1063/1.2103398

Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing

Anomalous thermal conductivity enhancement in nanotube suspensions
Interface effect on thermal conductivity of carbon nanotube composites

Ce-Wen Nan, Gang Liu, Yuanhua Lin, and Ming Li
State Key Lab of New Ceramics and Fine Processing, and Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People’s Republic of China

(Received 22 April 2004; accepted 1 September 2004)

A simple formula for the thermal conductivity enhancement in carbon nanotube composites is presented by incorporating the interface thermal resistance with an effective medium approach. This model well describes the thermal conductivity enhancement observed recently in nanotube suspensions. In particular, this simple formula predicts that a large interface thermal resistance across the nanotube-matrix interface causes a significant degradation in the thermal conductivity enhancement, even for the case with ultrahigh intrinsic thermal conductivity and aspect ratio of the carbon nanotubes embedded. © 2004 American Institute of Physics. [DOI: 10.1063/1.1808874]

Carbon nanotube composites in which the carbon nanotubes are used as fillers to employ their unique physical properties have attracted ever increasing attention and is a promising direction in nanotechnology. For example, carbon nanotubes are used to reinforce polymers,\(^1\)\(^-\)\(^4\) since the carbon nanotubes are much stronger and have larger aspect ratio than conventional carbon fibers. Recently, the carbon nanotubes were embedded into polymers or other media to get materials with good electrical and thermal transport properties.\(^5\)\(^-\)\(^7\) Experiments show a significant increase in the thermal conductivity of organic fluids or polymers as filled with relatively low concentration of carbon nanotubes.\(^6\)\(^,\)\(^7\) since the carbon nanotubes have unusually high thermal conductivity (e.g., 3000 W/mK for multiwalled carbon nanotubes\(^8\) or even higher for single-walled nanotubes\(^9\)). This is very technologically important for thermal management. In these carbon nanotube filled organic fluids or polymers, the nanotube-matrix interface is of particular interest. More importantly, one very recent experiment on interfacial heat flow in carbon nanotube suspensions by the Cahill and Keblinski group\(^0\) reports the first measurement on the interfacial thermal conductance (or interfacial thermal resistance) across the nanotube-matrix interface, and the heat transport in the nanotube composites will be limited by the small interfacial thermal conductance. Thermal transport behavior in such carbon nanotube suspensions/composites is theoretically intriguing, and a complete theoretical analysis of the thermal transport behavior of these carbon nanotube media is still missing. In this letter, we present understanding of the interface effect in the thermal behavior of the nanotube composites.

The interface thermal resistance (i.e., the reciprocal of the interface thermal conductance) is now known as the Kapitza resistance, \(R_K\), and defined by the heat flux, \(Q\), and the temperature drop, \(\Delta T\), across the interface, as \(Q = \Delta T/R_K\). The interface thermal resistance across the carbon nanotube matrix reported by the Cahill and Keblinski group\(^0\) is about \(8.3 \times 10^{-8}\) m\(^2\) K/W. This \(R_K\) value is of the same order of magnitude as those in other composite materials\(^11\) and polycrystals.\(^12\) Thus the interface thermal resistance can also dramatically alter the effective thermal conductivity of the nanotube composites.

For the nanotube composites with very small loading of nanotubes, the Maxwell–Garnett-type effective medium approach (EMA) is valid.\(^13\) In the nanotube composites, the thermal conductivity \(K_c\) of the carbon nanotubes is much larger than that \(K_m\) of the matrix (e.g., organic fluids or polymers), and the aspect ratio \(p\) of the nanotubes is quite high, i.e., \(p > 1000\). According to the EMA,\(^11\) the resultant effective thermal conductivity \(K_e\) of the nanotube composite with carbon nanotubes randomly dispersed in a matrix can be derived as

\[
\frac{K_e}{K_m} = \frac{3 + f(\beta_1 + \beta_2)}{3 - f \beta_1}
\]

with

\[
\beta_1 = \frac{2(K_{11}^c - K_m)}{K_{11}^c + K_m}, \quad \beta_2 = \frac{K_{33}^c}{K_m} - 1,
\]

where \(f\) is the volume fraction of the nanotubes; \(K_{11}^c\) and \(K_{33}^c\) are, respectively, the equivalent thermal conductivity along transverse and longitudinal axes of a composite unit cell, i.e., a nanotube coated with a very thin interfacial thermal barrier layer (see Fig. 1), and can be expressed as\(^14\)

\[
K_{11}^c = \frac{K_c}{1 + \frac{2a_K K_c}{d K_m}}, \quad K_{33}^c = \frac{K_c}{1 + \frac{2a_K K_c}{L K_m}},
\]

where \(d\) and \(L\) (\(p=L/d\)) are the diameter and length of the nanotubes, respectively, and \(a_K\) is a so-called Kapitza radius defined by

\[
K_{11}^c = \frac{K_c}{1 + 2a_K K_c / L K_m}, \quad K_{33}^c = \frac{K_c}{1 + 2a_K K_c / d K_m}.
\]

FIG. 1. Schematic illustration of a composite unit cell of a nanotube coated with a very thin interfacial thermal barrier layer. The transverse and longitudinal equivalent thermal conductivities, \(K_{11}^c\) and \(K_{33}^c\), of this composite unit cell can be directly obtained from the mixture rule for a simple series model of this interface-barrier/nanotube/interface barrier, i.e., \(1/K_{11}^c = 2R_K/d + 1/K_c\), and \(1/K_{33}^c = 2R_K/L + 1/K_c\).}

\(^{4}\)Author to whom correspondence should be addressed; electronic mail: cwnan@tsinghua.edu.cn
thermal conductivity ratio contains the effects of the diameter, aspect ratio, and volume fraction of the nanotubes, interface thermal resistance, and thermal conductivity enhancement. As seen, the thermal conductivity enhancement induced by the carbon nanotubes without the interface thermal resistance would be much larger than that in the case with the interface thermal resistance [Fig. 2(a)]. In the case of both perfect interface without any interface thermal resistance and \(p \gg 1 \) as for the carbon nanotubes, the thermal conductivity enhancement is further expressed as

\[
\frac{K_c}{K_m} = 1 + \frac{f p}{3} \frac{K_c/K_m}{d K_m},
\]

which is independent of geometric parameters (\(d \) and \(p \)) of the nanotubes and simply proportional to the thermal conductivity ratio \(K_c/K_m \). Thus large \(K_c/K_m \) (\(\sim 10^4 \)) should have led to much larger thermal conductivity enhancement than observed in experiments. However, the presence of a large interface thermal resistance across the nanotube-matrix interface causes a significant decrease in the thermal conductivity enhancement as observed in experiments.

Figure 3 more clearly shows this dramatic degradation in the thermal conductivity enhancement induced by the interface thermal resistance. This dramatic degradation in the thermal conductivity enhancement occurs mainly within the region of \(R_K < 10^{-7} \) m² K/W. As \(R_K > 10^{-7} \) m² K/W, the thermal conductivity enhancement is quite low. The calculations show that the thermal conductivity enhancement is already very insensitive to high thermal conductivity \(K_c \) when \(R_K \approx 10^{-8} \) m² K/W. This means that the single-walled nanotubes with high thermal conductivity (e.g., \(K_c = 6000 \) W/mK⁹) do not induce larger thermal conductivity enhancement in the nanotube composites than the multiwalled nanotubes with a bit lower thermal conductivity (e.g., \(K_c = 3000 \) W/mK or lower⁸) when \(R_K \approx 8 \times 10^{-8} \) m² K/W as reported. By contrast, the single-walled nanotubes would induce even lower thermal conductivity enhancement in the nanotube composites than the multiwalled nanotubes due to smaller diameters of the single-walled nanotubes than the multiwalled nanotubes [Fig. 2(a)]. In comparison with the nanotube suspensions, solid nanotube composites could exhibit more lower thermal conductivity enhancement due to processing challenges and poor nanotube dispersion.

In summary, a simple equation for predicting the effective thermal conductivity of the nanotube composites has been developed in terms of an effective medium approach incorporated with the interface thermal contact resistance. Comparison with recently reported experiment for the nanotube suspensions illustrates good validity of the simple
model for the thermal conductivity enhancement in the nanotube composites. In particular, the model shows that the thermal conductivity enhancement in the nanotube composites is mainly limited by the interface thermal resistance. A large interface thermal resistance across the nanotube-matrix interface causes a significant degradation in the thermal conductivity enhancement, and in this case, the single-walled nanotubes with even higher intrinsic thermal conductivity would induce even lower thermal conductivity enhancement in the nanotube composites than the multiwalled nanotubes.

This work was supported by the Ministry of Science and Technology of China (Nos. G2000067108 and 2002CB613303) and NSF of China.

14 The transverse equivalent conductivity \(K_{11} \) was given in Ref. 11, which is just the result of the mixture rule for a simple series model of the interface-barrier/nanotube/interface barrier along the transverse axis of the composite unit cell (Fig. 1). Similarly, the longitudinal equivalent conductivity \(K_{33} \) can be given also by the mixture rule for the simple series model of the interface-barrier/nanotube/interface barrier along the longitudinal axis of the composite unit cell (see Fig. 1). This \(K_{33} \) is a little different from that given previously in Ref. 11, but is more reasonable than that in Ref. 11, especially more valid for the very long (e.g., \(p \gg 1 \)) cylinder-shaped unit cell randomly dispersed in a matrix as in the present case. That \(K_{33} \) in Ref. 11 is valid for the ellipsoidal composite unit cell with not much large \(p \) or long cylinder-shaped unit cell continuously aligned in a matrix.